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Abstract

Fluorescent biosensors are now routinely imaged using two-photon microscopy in intact tissue, for 

instance, in brain slices and brains in living animals. But most studies measure temporal variation 

– e.g., calcium transients in response to neuronal activity – rather than calibrated levels of 

biosensor occupancy (and thus levels of the sensed analyte). True quantitative measurements are 

challenging, since it is difficult or impossible to calibrate a sensor's dose-response in situ, and 

difficult to compare the optical signals from tissue to those during in vitro calibration. Ratiometric 

measurements (at two wavelengths) are complicated by variations in laser power and by 

wavelength-dependent attenuation in tissue. For some biosensors, fluorescence lifetime imaging 

microscopy (FLIM) provides a valuable alternative that gives well-calibrated measurements of 

analyte levels.

Graphical abstract

Introduction

Genetically encoded optical tools are providing fantastic new methods for manipulation and 

measurement of brain cells (and many others) in real time and with cellular specificity. 

Optical measurement gives a dramatic report of episodic activities: bursts of stimulus-

triggered action potentials are brilliantly apparent as flashes in the fluorescence of highly 

optimized calcium sensors [1]. But for many important biological signals, a temporal pattern 

is not enough: a more intricate quantitative assessment of an optical reporter's signal is 

needed. And such quantitative measurement can be especially challenging in the context of 

brain imaging, both because the imaging involves two-photon excitation, and because the 

usual methods of signal calibration by chemical manipulation are difficult or impossible. 
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This review considers optimal approaches to quantitative biosensor imaging in this context, 

using either optical ratiometric or fluorescence lifetime imaging.

What is required for translating the fluorescent output of a biosensor into a quantitative 

measurement of the sensed level? A biosensor controlled by analyte binding1 gives a 

fluorescent report that is proportional to its occupancy – the empty sensor usually has non-

zero fluorescence, and the occupied sensor has a fluorescence that is greater or less than the 

empty value. But the intensity of any fluorescent signal will vary also with the concentration 

of the biosensor itself. To infer the occupancy of the sensor (and thus the concentration of 

analyte), the fluorescent signal must somehow be normalized to learn where it sits between 

the minimum and maximum values (Figure 1b). In some situations it is possible to measure 

these “floor” and “ceiling” values for each experiment – for instance, by permeabilizing the 

cells containing the biosensor and depleting or flooding the cell with the analyte. Ideally it is 

even possible to construct an in situ calibration curve for the sensor by observing the 

fluorescence response to known intermediate concentrations of the analyte.

Unfortunately, such in situ calibration is impossible when imaging the brain in vivo, and 

quite difficult even when imaging brain slices in vitro. Limited diffusional access combined 

with the cells' tendency to regulate the levels of all analytes of biological interest makes it 

impossible to control analyte concentration accurately.

The only alternative to in situ calibration is to use a calibrated optical measurement that can 

then be referred back to an in vitro calibration of optical response versus analyte 

concentration. The in vitro calibration would ideally be performed using protein samples or 

permeabilized cells viewed with the same microscope used for tissue imaging. Two imaging 

modalities can be used for this calibrated optical measurement: ratiometric imaging, and 

fluorescence lifetime imaging.

Ratiometric Two-Photon Imaging

The principle of ratiometric imaging is simple: fluorescence is measured at two different 

wavelengths. Analyte binding somehow changes the relative fluorescence at the two 

wavelengths, so that the ratio can be used to infer the level of analyte. The level of the 

biosensor itself will scale the two fluorescence values equally, so that there is no change in 

ratio.

Excitation-ratiometric biosensors

For fluorescent protein (FP) based sensors, one common type of ratiometric sensor is 

excitation ratiometric. The original green fluorescent protein (GFP) from jellyfish always 

emits green (∼500-550 nm) light, but it has two excitation bands around 405 nm (A band) 

and 495 nm (B band) [2]. The “enhanced” GFP (EGFP) was cured of this problem – it has 

only the 495 nm excitation peak – but many GFP-based sensors exploit the two original GFP 

1For simplicity, we focus our discussion on biosensors that bind a particular analyte and report its concentration; other types of 
sensors exist (for instance those that report on their own phosphorylation state and thus indirectly on protein kinase and protein 
phosphatase activity) that present additional problems in quantitation. We have also focused on genetically-encoded, fluorescent 
protein based sensors, though the same measurement principles apply to small molecule sensors.

Yellen and Mongeon Page 2

Curr Opin Chem Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bands for ratiometric sensing using a single circularly-permuted FP [3–5]. Binding of 

analyte shifts the resting state of the sensor between the two absorption bands, so that the 

relative response to the two excitation wavelengths is altered (Figure 1a,b). The switch 

between absorption bands can often be accomplished not only by analyte binding but also by 

environmental changes, particularly changes in pH. This is an important concern for the use 

of FP-based biosensors, requiring the simultaneous use of pH sensors for accurate 

calibration [6].

Excitation ratio measurements have long been used by biologists using standard one-photon 

excitation in the UV-visible range, particularly for the calcium-sensitive dyes such as the 

fura-2 dye introduced by Roger Tsien and colleagues in the 1980's [7]. As they described, 

the apparent affinity of the sensor varies systematically with the wavelengths chosen for the 

ratio measurement, and this important principle applies to all excitation-ratiometric 

measurements.

Each ratiometric image requires two separate exposures, using the two excitation 

wavelengths. For one-photon excitation, rapid wavelength switching can be accomplished 

using filter wheels, galvanometer-driven monochromators, or rapid switching of LED-based 

or laser light sources [34]. In the scanning two-photon microscope used for tissue and in 

vivo imaging, slow switching can be accomplished by tuning the pulsed excitation laser 

(typically a tunable Ti-sapphire laser) between two different excitation wavelengths. Even 

with modern integrated mode-locked lasers, tuning requires several seconds or more. Fast 

switching (on the millisecond time scale) requires a second (expensive) pulsed laser: each 

laser is tuned to a different excitation wavelength, and electronic shuttering (using electro-

optical modulators) is used to allow sequential acquisition of signals evoked by the two 

lasers, often alternating by scan line [35].

An additional challenge for excitation ratio imaging with two-photon excitation is that two-

photon excitation spectra often look very different from the one-photon spectra, because of 

the different rules for electronic transitions in response to one- vs. two-photon excitation [8]. 

Nevertheless, selective two-photon excitation of the A- and B-bands of GFP, and thus 

excitation-ratiometric measurement of FP biosensors, is possible [6,9–11] (Figure 1c).

Finally, how can excitation ratios be calibrated between different samples, and from time to 

time? Excitation ratios will be affected by variation in relative laser power at the two 

wavelengths. Wavelength-dependent scattering will also vary the effective excitation power 

with depth in the tissue: for instance, 800 nm light is scattered more than 950 nm light, so 

that an additional 100 micrometers depth in tissue will result in a ∼20% reduction in relative 

(800 nm / 900 nm) linear laser power, and thus a ∼30-40% reduction in two-photon 

excitation [calculations based on [12]].

Ideally, to correct for power fluctuation in laser output and depth-dependent variation, one 

would like an accurate report of the relative two-photon excitation power at the two 

excitation wavelengths, under the specific conditions of the experiment (imaging depth, 

actual laser power and pulse duration at the imaging site). The best calibration tool would be 

an FP that always produces the same relative response to A- and B-band excitation – which 
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would allow adjustment of the relative power or the relative output measurements. Failing 

this (as we are unaware of such an FP), we propose the use of a ratiometric FP such as 

pHluorin [13] to indicate relative power in the A- and B- bands, combined with an 

independent, fluorescence lifetime based measurement of the pH to control for the pH effect 

on the relative fluorescence of those bands [14,15]2.

Emission-ratiometric biosensors, including FRET sensors

A second ratiometric sensor design depends on Förster resonance energy transfer (FRET) 

between two FPs [16–20]. This energy transfer, for instance from a cyan FP to a yellow FP, 

depends on overlap between the emission band of one FP (the donor) and the excitation 

band of the second FP (the acceptor), as well as on the distance and orientation between the 

FPs. This principle has been used to report on the interaction between two separate proteins, 

each tagged with one FP [21]. For analyte-binding biosensors, the design allows analyte 

binding to change the relative position of the two FPs, and thus the efficiency of FRET. A 

variety of imaging strategies is used for such sensors (viz. [22–24]), but the simplest 

involves a straightforward emission ratio measurement. A single excitation wavelength is 

chosen, which selectively excites the short-wave donor FP. Depending on the analyte 

concentration, some of the donor FPs transfer their excited state energy to a neighboring 

acceptor FP by a non-radiative mechanism, while others do not. Therefore the ratio of donor 

emission to acceptor emission reflects the efficiency of FRET, which in turn reflects the 

analyte concentration. Corrections must be made for the overlap in both excitation and 

emission spectra: some acceptor FPs will be inadvertently excited directly3, and some of the 

light emitted from donor FPs will be in the wavelength range used for detecting the acceptor 

emission.

Other non-FRET biosensors also can be monitored using an emission ratio. Some have been 

produced using single FPs [9,25,26], though single FP sensors are usually excitation 

ratiometric; others involve non-FRET intramolecular interactions of multiple FPs [27]. 

Sometimes single FP sensors that respond to analyte binding with an intensity change alone 

are combined in tandem with a second FP of a different color, to normalize for sensor 

concentration [28]. While this allows some degree of calibration, all dual FP sensors are 

subject to variation from prep to prep and time to time in the absolute emission ratio, 

because different FPs mature at different rates and also photobleach at different rates.

Emission ratios are somewhat more resistant than excitation ratios to wavelength-dependent 

attenuation in tissue. For instance, emission attenuation due to scattering alone is predicted 

to give about a 10% change in the ratio of green (525 nm) to red (625 nm) emission for a 

change of 100 um in depth4. In the case of blood-perfused brain tissue in vivo, however, 

hemoglobin absorbance increases the total depth-dependent change in emission ratio to 

about 30-40% for 100 um variation in depth5.

2The relative fluorescence of the two absorption bands of FPs is often affected by pH; in pH reporters like pHluorin, this dependence 
is well-characterized.
3And this problem may be worse with two-photon excitation.
4The attenuation estimates in this paragraph were calculated by the authors using scattering and absorbance data from [29].
5We are unaware of attempts to correct for this color bias. In principle, it seems that fluorescent beads of various colors or tandem 
expression of non-biosensor FPs could be used to estimate the empirical magnitude of this depth-dependent effect and to correct it.
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Fluorescence lifetime imaging

Compared with ratiometric approaches, fluorescence lifetime imaging microscopy (FLIM) 

provides a more robust imaging modality for quantitative biosensor imaging when imaging 

in tissue. Fluorescence lifetime is defined as the time between absorption of an “excitation 

photon” (or two photons), and the subsequent emission of a photon. As for a radioactive 

decay process, the emission of individual photons is stochastic, but the statistics of the decay 

process are characteristic of the fluorophore and describe the dwell time in the excited state 

(Figure 2a). For FP fluorescence, as for other chromophores, the dwell time in the excited 

state is determined by the total exit rate from the excited state. The excited state can return 

to the ground state not only by emission of a fluorescence photon, but also by non-radiative 

energy decay (quenching) or energy transfer (e.g. FRET).

Fluorescence biosensors often exhibit changes in fluorescence lifetime, in addition to their 

change in fluorescence intensity. For instance, when the fluorescence output of a single FP 

biosensor is increased by analyte binding, this may correspond to reduced quenching 

(perhaps because the β-barrel structure provides increased protection of the fluorophore 

from solvent) – in which case fluorescence lifetime will likely increase6. Several single FP 

sensors exhibit very substantial changes in fluorescence lifetime [15] (Figure 3)

Also, virtually all FRET sensors should exhibit a change in fluorescence lifetime of the 

donor FP (the cyan FP in our example before), since FRET provides an additional non-

radiative decay pathway for the excited state of the donor FP [30]7. When using 

fluorescence lifetime to monitor the state of a FRET biosensor, it becomes possible to use a 

completely non-fluorescent acceptor species [31]. This reduces the portion of the visible 

spectrum used for a single biosensor measurement, and allows simultaneous use of multiple 

sensors.

Fluorescence lifetime provides a very easy calibration between a biosensor measurement in 

tissue and the reference calibration of the sensor in vitro. Lifetime is an intensive rather than 

an extensive property of the fluorophore, so the measurement does not vary with the 

expression level of the biosensor. In contrast to the ratiometric methods, which involve 

measurements at multiple wavelengths and thus correction for the relative excitation power, 

attenuation, and filter efficiencies in the particular instrument used for the measurement, 

fluorescence lifetime is measured in well-calibrated units of time that can be referenced 

directly between different instruments.

The standard equipment of a two-photon microscope facilitates the measurement of 

fluorescence lifetime, because the pulsed laser needed for two-photon excitation provides a 

well-defined “start time” for determining fluorescence lifetime.. Time-correlated single 

6Some single FP sensors, particularly those developed for ratiometric imaging, exhibit little or no change in fluorescence lifetime, 
however. In principle, analyte binding to a sensor can produce a change in absorbance, a change in quantum yield, or both. Only 
changes in quantum yield are seen as changes in lifetime. Ratiometric sensors are selected to have a large shift between A- and B-band 
absorbance, which itself produces no change in lifetime; but they may also have a change in quantum yield and thus lifetime. During 
sensor development it is possible to select versions that have substantial lifetime changes.
7We have found that some sensors that were designed to operate by a FRET mechanism do not exhibit any change in donor 
fluorescence lifetime [R.M. and G.Y., unpublished]. We conclude either that those sensors do not actually use a FRET mechanism 
(though they do exhibit a change in emission ratio between the FPs), or that in the non-FRET state there is some offsetting quenching 
process that depresses the donor lifetime equivalently to the FRET state.
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photon counting (TCSPC) involves the measurement of the arrival time of each emitted 

photon, relative to the most recent laser pulse (which is the one most likely to have provoked 

the emission) (Figure 2b) [32]. Almost all lasers for two-photon microscopy operate with a 

repetition rate of ∼80 MHz, so the ∼12.5 ns between laser pulses allows an excellent 

measurement window for the exponential decay of the excited state, which for fluorescent 

proteins is typically in the 1-3 ns range.

The detection electronics for FLIM have been the tricky and expensive part of lifetime 

imaging. The traditional hybrid analog-digital systems have time-to-amplitude converters 

and digitizers that are limited by their electronic reset times – after detecting a photon, they 

are blind to additional photons for the next 100-125 ns [32]. Additionally, the photon arrival 

time measurements become biased if two photons arrive in response to the same laser pulse. 

Both of these issues (referred to as “dead time” and “pile-up”, respectively) limit the 

incident photon intensity and thus limit dynamic range and prolong data collection times; 

they also affect the accuracy of the lifetime measurement.

These problems can be overcome by a fully digitized detection system. State-of-the-art 

digitizers can convert analog signals to digital values at rates exceeding one value per 

nanosecond (gigasamples per second). While no ordinary sequential microprocessor is 

capable of processing photon detector signals at this rate, parallel and pipelined processing 

based on field-programmable gate array (FPGA) technology permits the continuous 

processing of photon detector signals into fluorescence lifetime images (G.Y., unpublished). 

This digitized FLIM approach has no “dead time” issues and is able to avoid “pile-up” by 

excluding multiple photon events from analysis (though such multiple photon events are 

counted for intensity purposes). Such a digitized FLIM system is capable of imaging a wide 

dynamic range of light (with a maximum lifetime count rate of ∼30 MHz obtained when the 

mean photon rate is one per laser pulse, i.e. ∼80 MHz, based on Poisson statistics).

All FLIM systems collect fluorescence decay curves (Figure 2, Figure 3a) that are then fit 

with multiple-exponential functions to define the contribution of different lifetime 

components. This detailed fitting is important particularly when the fluorescence signal is 

contributed by multiple fluorophores [32,33]. But for biosensor imaging, most of the 

collected light comes from a single known fluorophore, the biosensor itself8. Once a 

biosensor's lifetime over a range of analyte concentrations has been measured, detailed 

fitting is no longer required – the occupancy state can be inferred from simple parametric 

measurements of lifetime – such as the mean empirical lifetime9 (Figure 3). This allows 

usable lifetime data, with mean lifetime error on the order of 1%, to be collected in less than 

a second, or even in milliseconds with a focused scan (e.g. a line scan) and with bright 

samples10.

8When biosensor expression is low, tissue autofluorescence may become a confounding factor both for lifetime measurement and 
ratiometric measurement.
9Also referred to as mean arrival time or the first moment of the lifetime distribution [32].
10The number of photons required within a region of interest (ROI) to achieve a 1% standard error in the lifetime measurement is 
∼10,000 (based on sampling error ∼ 1/√N). At moderate photon fluxes of 1 - 5 MHz, this would require an ROI sample time of ∼2 - 
10 ms. For a full frame large enough to accommodate ∼25 such ROIs, the practical full-frame acquisition time would be ∼0.1 – 0.4 
sec.
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As an imaging modality for fluorescent biosensors, FLIM thus offers a very valuable and 

much more readily calibrated alternative to ratiometric measurements when quantitative 

imaging is the goal.
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Highlights

• Two-photon imaging of biosensors in intact tissue is challenging to calibrate.

• Ratiometric or fluorescence lifetime imaging can provide the needed 

normalization.

• Calibrated ratiometric imaging requires depth and power correction.

• Fluorescence lifetime imaging provides a calibrated readout of sensor 

occupancy.
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Figure 1. 
Fluorescence behavior of a ratiometric biosensor. The examples here are for an ATP sensor, 

PercevalHR (adapted from [6]). (a) An excitation ratiometric sensor changes its excitation 

spectrum as analyte concentration is increased (from black to red). Relative fluorescence 

increases at some wavelengths (λhigh), decreases at others (λlow), and often exhibits an 

isosbestic wavelength where there is no change (λiso). (b) The ratio varies predictably as a 

function of analyte concentration. (c) Comparison of the excitation spectra for one-photon 

and two-photon excitation, with and without analyte. The energy of a single photon of 

wavelength 425 nm is equivalent to the energy of two photons at 850 nm, but the two-

photon excitation spectrum is not quite predictable from the single-photon excitation 

spectrum. Nevertheless, it is possible for this excitation-ratiometric sensor to be ratio-

imaged using two-photon excitation (e.g. at 950 and 830 nm; see also [36]).
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Figure 2. 
Fluorescence lifetime: theory and measurement. (a) Fluorescence lifetime reports the 

average dwell time of a fluorophore in the excited state. After excitation, a photon is emitted 

at a random time, whose average value τ is inversely related to the rate constant for 

emission. If a non-radiative “quenching” rate is added, the average dwell time in the excited 

state is reduced. (b) Time-correlated single photon counting with a pulsed laser source. The 

two-photon excitation laser fires continuously at ∼80 MHz, or once every 12.5 ns (the 

actual pulse duration is exaggerated in the diagram; a typical pulse duration is only 0.0001 

ns). Whenever only a single photon is detected after a laser pulse, the time delay (∆t) is 

measured from the laser pulse to the photon detection. Depending on the average photon 

flux, some laser pulses will elicit no fluorescence, some will have single photons, and some 

will have more than one photon (which makes a precise delay measurement impossible). A 

histogram of many ∆t values gives an exponential decay plot like that in (a); these are often 

plotted with a logarithmic y-axis, which makes a single exponential appear like a straight 

line. An arithmetic average of the ∆t values gives an “empirical mean τ” value, and the 

standard error of this mean value is related to (Nphotons)−1/2.
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Figure 3. 
Fluorescence lifetime imaging: cellular pH determination and calcium dynamics. (a) 
Lifetime decay curves of pHRed sensor fluorescence in HEK293 cells clamped at an 

intracellular pH of 6, 7 and 8 (nigericin method, [15]). Each decay curve is well described 

by a biexponential fit (shown) with average τ decay values of 1.66, 1.96 and 2.17 ns for pH 

6, 7 and 8, respectively. (b) Fluorescence lifetime images of the HEK293 cells used to 

generate the decay curves in (a). Pixels are pseudo-colored according to the mean empirical 

lifetime, a fit-free parametric measurement. The mean empirical lifetime values are 1.65, 

1.97 and 2.19 ns for cells at pH 6, 7 and 8, respectively. The mean empirical lifetime 

corresponds well to the fitted average τ values at each pH. (c) Calibration of the 

fluorescence lifetime response of pHRed to pH changes (adapted from [15]). (d) 
Fluorescence lifetime image of hippocampal dentate granule neurons in a brain slice 

preparation expressing the RCaMP1h calcium sensor [10]. Spontaneous electrical activity 

and calcium responses were elicited by addition of 7.5 mM extracellular KCl. The pseudo-

colored image shown indicates the fluorescence lifetime of each neuron averaged over 

approximately 5 seconds. (e) Sub-second changes in RCaMP1h fluorescence due to cellular 

calcium dynamics are easily resolved using lifetime imaging. Mean empirical fluorescence 

lifetime is plotted for each 266 ms frame (black circles in traces), imaging the sensor in a 

single dentate granule neuron. Four separate episodes of spontaneous activity are illustrated. 

Maximum and minimum observed lifetime values for RCaMP1h are indicated as ceiling and 

floor, respectively; in principle the calibration of fluorescence lifetime of RCaMP1h to 

calcium concentration can be accomplished similarly to that shown in (c) for pHRed sensor. 

The photon flux of ∼0.5 MHz and total photon counts of ∼30,000 photons yielded <0.6% 

error in the mean lifetime estimation.
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